A New Method for Breast Cancer Diagnosis Using Neural Network and Genetic Algorithms

Atefeh Ahmadi Far a,*,

a Department of Computer Engineering, Khorrarambad Branch, Islamic Azad University, Lorestan, Iran

* Corresponding author email address: atefeatfehahmadi68@yahoo.com

Abstract

Breast cancer in women is one of the fatal diseases that takes the lives of thousands of women around the world every year while if its common signs and symptoms are identified in time and at the early stages the patients can be easily treated. Unfortunately, the symptoms are usually detected when the cancer has developed and spread in the body and it is too late for treatment and. In addition to genetic factors, other factors such as age and weight play an important role in developing this disease. Breast cancer has hidden patterns which specialists and researchers usually fail to discover without data mining techniques. Breast cancer patients’ files can contain valuable information which can be discovered through data mining techniques. One of the characteristics of data mining is the effective searching and computing large sets of data in the medical domain. The aim of this study is therefore to develop a new diagnosis system using the combination of neural networks and genetic techniques. To evaluate the proposed method, we performed several experiments on a breast cancer dataset which is available in UC Irvine machine learning repository. The experimental results show that the method can be used to obtain efficient automatic diagnostic systems for breast cancer with classification accuracy of about %98. The proposed diagnosis system can be used for early detection of breast cancer without needing to undergo clinical trial.

Keywords: Women with breast cancer, Data mining, Neural networks, Genetic algorithms, Pattern discovery, Disease prediction model

1. Introduction

Data mining is practiced to discover hidden patterns from the large amount of data (Piatetsky-Shapiro, 1996). Data mining techniques in medical science, in particular, have many applications. They can help to diagnose the disease most accurately and in the most effective way. One of the interesting, yet challenging practices in data mining is to use valuable information in different patients’ records, to discover hidden patterns which can be used in providing predictive models of the disease and accordingly detecting a specific disease.

Breast cancer is the most common cancer among women; excluding non melanoma skin cancers (Karabatak, and Ince, 2009). In the several studies, statistical techniques and artificial intelligence techniques have been used to predict the breast cancer (Chen et al., 2011; Kovalerchuk et al., 1997). According to the World Health Organization, about one-third of the cancer burden could be decreased if cases are detected and treated early (Chen et al., 2011).

Neural network is one of the various and the most widely used method which is applied in data mining. Neural network learns system behavior by using system input-output data (Nilashi et al., 2014a; Nilashi et al., 2014b; Nilashi et al., 2015a; Nilashi et al., 2015b). Neural network has good generalization capabilities. The learning and generalization capabilities of neural network enable it to more effectively address real-world problems. Thus, neural network can solve many problems that are either unsolved or inefficiently solved by existing techniques (Nilashi et al., 2015a). A genetic algorithm has been used as a robust optimization method for solving both constrained and unconstrained optimization problems based on a natural selection process that mimics biological evolution.

The present study discusses how patients’ data can be used by neural network for training and to building the predictive models described above to be used in disease diagnosis. Specifically, we show that how genetic algorithm can increase the predictive accuracy of prediction models of neural networks. In summary, we will show that the combination of neural network and genetic algorithm can be used effectively in diseases diagnosis systems. The present research is motivated by the high rate of breast cancer mortality, and the need for methods that can be efficient without clinical trials and diagnostic mammography, and also estimate the disease to save more lives and improve existing methods of detecting breast cancer. In addition, the most important questions that will be investigated in this study are as follows: