

Journal of Soft Computing and Decision Support Systems

E-ISSN: 2289-8603

The Role of Data Centers in Advancing Green IT: A Literature Review

Anand Santhanam a,*, Christina Keller a

^a Jönköping University, Jönköping International Business School, Informatics, Gjuterigatan 5, Jönköping, Sweden, SE-551 11

* Corresponding author email address: anand.santhanam@ju.se

Abstract

The explosion in data consumption and data generation has led to expansion of data centers, which are significant stakeholders in obtaining sustainability. This paper investigates what role data centers can play in advancing sustainability and green IT by performing a literature review. The purpose of the review was to provide a holistic framework that can help to position current and new research on the factors influencing the implementation of green IT in the data center. The review was limited to peer-reviewed journal articles and conference papers. The reviewed papers were analyzed by inductive content analysis, which created the five categories of 1) power savings, 2) cost savings, 3) sustainability and green energy, 4) information technology for greening data centers, and 5) aligning business requirements with resource utilization. Based on these categories, a framework describing how data center can contribute to green IT was created. Power savings and cost savings were found to influence as well as contribute to choices and development of information technology for greening data centers. Also, the categories of sustainability and green energy and alignment of business requirements of business utilization have a bi-directional relationship with information technology used in data centers. The findings further indicate that there is a need to study the alignment of business requirements with resource utilization due to a lack of publications in this area.

Keywords: Data center, Green IT, Green IS, Sustainability, Literature review

1. Introduction

In 1987, the Brundtland Commission sustainable development to comprise of three pillars; social, economic and environmental sustainability (Brundtland, 1987). According to Murugesan and Gangadharan (2012), green IT is an economic, technical as well as environmental imperative. The concept of green IT "denotes all activities and efforts incorporating ecologically friendly technologies and processes into the entire lifecycle of information and communication technology" (Hedwig et al., 2009, p. 2). There is sometimes an overlap between the concept of green IT and other concepts, such as green IS (information systems) and sustainability.

Green IT refers to "the direct impact of energy consumption and waste associated with the use of hardware and software" (Boudreau et al., 2008). Green IS, on the other hand, refer to "environmental systems that can be developed with or without green IT to support sustainability initiatives" (Boudreau et al., 2008; Jenkin et al., 2011). Other researchers attempt to separate Green IT from Green IS (Brooks et al., 2012; Erek et al., 2012) while some regard green IT as a part of Green IS (Brooks et al., 2012; Melville, 2010). Other authors use these terms synonymously (Huang, 2008; Mithas et al., 2010). Based on a structured literature review, Chasin (2014, p. 348) defines sustainability in information systems as a:

"characteristic of a stakeholder activity (organizational process or individual behaviour), which impacts on natural and social environments and meets the (economic) needs of the present without compromising the ability of future stakeholders to meet their needs." According to Chasin (2014), the central implication of this definition is a need to analyze ecological, economic and social dimensions at the activity level of the stakeholder.

The Brundtland commission (1987) formulated the definition on sustainability which has become the most widely adopted definition on research in sustainability. The present scientific discourse on sustainability in information systems appears marginal in comparison to other disciplines such as engineering, mining etc. (Penzenstadler, 2013; Dovers, 1989; Brown et al., 1987; Owens, 2003; Kuhlman and Farrington, 2010; White, 2013; Glavic and Lukman, 2007).

Simmonds and Bhattacherjee (2012) state that environmental sustainability research in IS is sparse. Some IS researchers have developed frameworks in their research on environmental sustainability in IS. Some of the most notable are the energy informatics framework developed by Watson et al. (2010), a conceptual model on four key environmental issues and six stakeholder categories by Elliot (2011) and the Belief Action Framework (BAO) by Melville (2010).

Previous literature reviews on green IT and green IS has focused on:

- Overlaps and differences between green IT practitioners and academic literature (Brooks et al., 2010):
- ii. Investigating a taxonomy of corporate social responsibility, sustainability, stakeholders, environment, green IS and green IT (Marrone et al., 2011);
- iii. Summarizing the existing research field and research gaps (Esfahani et al., 2014);
- iv. A taxonomy of segments of green IT publications (Tushi et al., 2014);
- v. Green IT/IS adoption (Lei and Ngai, 2013; Esfahani et al., 2015).
- vi. Organizational research on green IT, focusing on research questions and gaps in current research (Asadi et al., 2017).

Information systems research has been responsible for increasing productivity in the later part of the last century. Much research has gone into design, development, adoption, usage, diffusion, maintenance and retirement of old systems. While organizations were busy with development and adoption of IS, they are also equally guilty of inefficiency and wastage. Therefore, it is the responsibility of the community to reduce wastage and increase initiatives that can support environmental sustainability (Watson et al., 2010). IS can shape the beliefs individuals and organizations in environmental and economic performance (Melville, 2010). However, the current body of knowledge on Green IT does not provide enough information on how various actors and resources interrelate to create a successful Green IT practice (Iiab et al., 2012).

The explosion in data consumption and data generation has led to expansion of data centers. This has also started increasing the overhead on the existing data centers with the need to adapt to new technologies and new infrastructure. The facility management in charge of space, electricity usage and cooling are determined by the IT operations and business processes in the organization. Green IT as a concept needs to be implemented throughout the data center in a lifecycle starting from sourcing, building and use to disposal. Data centers are thus significant stakeholders in ecological sustainability as stated by Chasin (2014). To the best of our knowledge, no research article so far has focused on reviewing the role of data centers in advancing green IT. Thus, this study aims to fill a research gap.

Consequently, the purpose of this paper is to provide a framework to position current research on the topic of how data centers can advance green IT. This is done to understand the position of the topic of data centers within the wider concept of Green IT.

The paper is structured as follows: First, the emergence of green IT within information systems research is presented and the concepts of green IT and data center are defined. Second, the methodology of the literature review is

described. Third, the findings from the literature review are presented. Finally, the conclusions from the literature review are presented and discussed, as well as limitations of the present study and suggestions for further research.

2. Theoretical Background

2.1 Green IT

Green information technology is an important domain of green information systems as the use of environmentally sustainable information technologies facilitates informed decision making. Green IT is at the growth stage in developed countries and at the infancy stage in developing countries (Molla and Cooper, 2014). It is against this backdrop that the concept of green IT has been gathering importance. As per Murugesan and Gangadharan (2012, p. xxxii): "green IT refers to information technology, systems and applications that contains three complementary ITenabled approaches which help to improve environmental sustainability. They (i) minimize the energy consumption and environmental impact of computing resources over their life cycle; (ii) harness the power of IT and information systems to empower – that is to support, assist and leverage - other environmental initiatives by businesses and (iii) leverage IT to help create awareness among stakeholders and promote green agenda and green initiatives". In addition, there exists an economic incentive in trying to adopt green IT processes as it can reduce operation costs and increase revenue from data center operations. Government mechanisms and taxes would increase demand for green IT services while forcing organizations to adhere to strict norms. Another definition of green IT could be a reference to environmentally friendly information systems, applications and practices (Murugesan, 2008).

The emergence of Green IT within IS research has been slow as the IS academic community took time to acknowledge the problem of environmental sustainability and act (Watson et al., 2010). The authors further suggest the need for a separate subfield of study called energy informatics that can investigate how IS can contribute in reducing energy consumption and carbon dioxide emissions.

The concepts of green IT and environmental sustainability are interlinked by the fact that green IT facilitates environmental sustainability. It consists of three IT enabled approaches that complement each other. These approaches help improve environmental sustainability (Murugesan, 2008). They are:

- i. The entire cycle involving efficient and effective design, manufacture, use and disposal of computing hardware, software and communication systems in such a way that there is minimum impact on environment (Murugesan and Gangadharan, 2012).
- ii. To use information technology and information systems to empower other enterprise wide environmental initiatives (Murugesan and Gangadharan, 2012).

 Harnessing IT to create awareness among stakeholders and promote green agenda and initiatives.

The focus of this paper is on the impact of data centers on Green IT. A brief background on data centers would help to understand why data centers are important in the context of green IT.

2.2 Data Centres

A data center is "a department in an enterprise (organization), which houses and maintains back-end information technology (IT) systems and data stores—its mainframes, servers and databases." (Gartner, 2013). This is the physical (infrastructure) definition of a data center. From an operational perspective, a data center can be defined as a place that processes business transactions, host websites, process and stores intellectual property, maintains financial records and routes e-mails. In other words, a data center can be considered as the brain of the company (Khasawneh, 2015).

Market and industry trends are driving enterprises to look beyond traditional technology infrastructure silos and transform their business processes. Many enterprises are looking to virtualization, fabric-based infrastructure, modular designs and cloud computing to find the best strategy to optimize resources (Gartner, 2013).

Data centers have evolved since the days of their inception. In the current scenario with most operations moving online and into cloud services, most data centers of

large corporations, such as Facebook and Twitter, that deals with large amounts of data fall into the category of enterprise data centers. Traditional organizations who own smaller data centers or smaller data rooms would like to either consolidate their data rooms or outsource their data centre operations to third party hosting service providers or improve the efficiency of their existing data rooms (Uptime Institute, 2016). The energy consumption of these data centers in the case of both electricity and cooling is equivalent to the energy needed to power a small city (Uddin and Rahman, 2012a). This has created a need for green data centers. The need for greening data centers or green data centers is defined as an ongoing process towards making data centers energy efficient, while ensuring that electricity and cooling are driven by sustainable resources. Data centers alone consume almost 1.5% of the total energy that is consumed worldwide. The impact of carbon dioxide emissions on climate change and the rapid concentration of IT services in data centers have raised questions about their energy sustainability (Koomey, 2011). Energy consumption is a significant share of data center costs. Thus, to save energy is a necessity for data centers to save costs. Regulations are also being established worldwide to limit corporate emissions, and to promote power generation and procurement from renewable energy sources.

The evolution of data centers can be better described through the categories of data centers also known as data center tier. This can be best illustrated by means of Fig. 1.

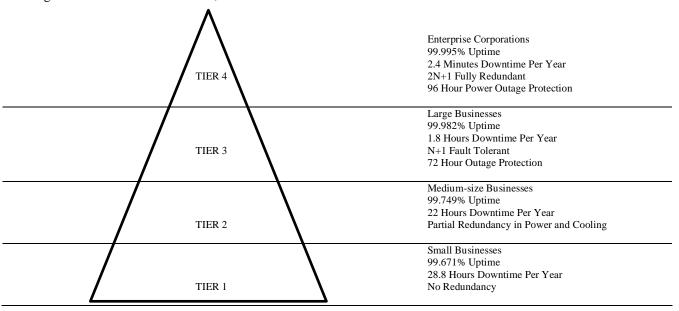


Fig. 1. Data Center Tiers (Uptime Institute, 2016).

This tier system can be explained as follows (Uptime Institute, 2016):

Tier I: Basic Capacity: Tier I data centers provide site infrastructure beyond a regular office setting. It includes a dedicated space for IT systems; an uninterrupted power supply (UPS) to filter power spikes, sags, and momentary disruptions as well as cooling equipment around-the-clock

and an engine generator to protect from extended power outages.

Tier II: Redundant Capacity Components Tier II facilities include such as UPS modules, chillers or pumps, and engine generators to increase the margin of safety against IT process disruptions resulting from site infrastructure equipment failures.

Tier III: Concurrently Maintainable Tier III data center requires no shutdowns for equipment replacement and maintenance. In addition to the functions of Tier II, there is redundant delivery path for power and cooling. This means that all s needed to support the IT processing environment can be shut down and maintained without interrupting IT operations.

Tier IV: Fault Tolerance Tier IV site infrastructure builds on Tier III, adding the concept of Fault Tolerance, which means that when equipment failures or distribution path interruptions occur, the impact of the events is stopped short of the IT operations.

Data center infrastructure costs and complexity increase with Tier Level, and the data center management must take a decision which Tier Level that fits their needs. There needs to be a match between the data center infrastructure and the business application, otherwise companies can overinvest or take risks regarding costs and environmental impact. In the present scenario with most operations moving online and into cloud services, most data centers of large corporations that deals with large amounts of data fall into Tier 4 category. The greening of data centers has been happening in the Tier 4 category as these data centers are capable of consuming energy needed to power a small city (Uddin and Rahman, 2012b).

This classification is based on the facility perspective of data centers. The facility management is responsible for the power distribution and management, Coolers, chillers and space management in the data centers. The reason for doing this was that data centers remained in the domain of facility management teams. Currently, after the massive explosion of data and development of new technologies data centers

are changing into software defined data centers. An SDDC is a data center in which all the infrastructure is virtualized and delivered "as-a-service" (Gartner, 2013). This means that the focus of operations is changing from a hard ware perspective to a software perspective. The physical infrastructure of network, storage and servers is available as logical units.

3. Methodology

The purpose of the review is to provide a holistic framework that can help to position current and new research on the factors influencing the implementation of green IT in the data center. To categorize research articles, a concept-centric matrix based on Webster and Watson (2002) was used. The source of the literature review was Scopus database. The review was limited to peer-reviewed journal articles and conference papers. The search terms used were "green IT + data center", "green IS + data center", "Sustainability IT + data center", and "Sustainable IS + data center". The maximum search results were obtained by using "Green IT + data center". The other search criteria gave results that can be considered as a subset of the search results of "Green IT + data center". This reveals that the terms green IS, sustainable IT and sustainable IS are embedded within Green IT. The total number of peer reviewed journals and peer reviewed conference articles that could be obtained using the search term Green IT + data center was one hundred and eleven (111). The table below presents the search results based on different search criteria.

Table 1Search terms used in the literature review.

Search terms	Number of peer-reviewed journal	Number of peer-reviewed conference
	articles	articles
Green IT + data center	45	65
Green IS + data center	3	6
Sustainable IT + data center	2	9
Sustainable IS + data center	0	0
Sustainable IT	163	106
Sustainable IS	155	77

There are two important aspects regarding writing a literature review per Webster and Watson (2002). In the case of a mature topic in which extensive research has been done an extensive body of knowledge has been created that needs analysis and synthesis. A thorough literature review would help to produce a conceptual model that can extend existing research. The other aspect would be to tackle an emerging issue whose theoretical foundations can help create a conceptual model. As the search term of green information technology and data center yielded maximum results, the authors decided to continue with these terms. Further, it can be said that the result of the other terms such as green IS, sustainable IS and sustainable IT lie within the scope of Green IT and data centers. The search within Scopus data base automatically extends to others such as ABI/INFORM, Springer and the search results were

similar. This could be attribute to the fact that most authors used the two concepts of Green IT and Green IS interchangeably. The data base was generated for the period between 2008 and 2015. 45 peer-reviewed journal articles (see Table 1 in Appendix A) and 65 peer-reviewed conferences articles (see Table 2 in Appendix A) were included in the literature review.

Based on the research question "How can data centers advance green IT?" an inductive content analysis (Elo and Kyngäs, 2008; Graneheim and Lundman, 2004) was performed. Meaning units and codes were identified from the articles to create categories corresponding to the concepts in the matrix as per Webster and Watson (2002). In Table 2, examples of meaning units, codes and categories from the content analysis are presented.

4. Findings

The inductive content analysis of the article resulted in five main categories; 1) power savings, 2) cost savings, 3) sustainability and green energy, 4) information technology for greening data centers, and 5) aligning business requirements with resource utilization. The full concept-centric matrices describing what articles belong to what categories and subcategories is presented in Tables 1 and 2 in Appendix A. Table 3 summarizes the findings from the literature review. The categories and subcategories will be described in detail in the following sections, with examples of articles within each category.

4.1 Power savings

One of the objectives of any data center is to use power efficiently, which would result in power savings. The articles within this category fall into the three subcategories of Renewable energy and waste heat usage (3 articles), Power management/energy efficiency/cooling (68 articles), and Performance metrics (14 articles). Most articles fall into the subcategory of Power management/energy efficiency/ cooling (68 out of 86). Aslekar and Damle (2015) investigate the need for new types of data center design that can help to optimize energy consumption and bring in operation excellence. Cameron (2014) identify the challenges faced by data centers in power management while Carter and Rajamani (2010) describe the conflicts involved in hardware and software designs at different levels that need to be overcome by co-design to improve efficient usage of power in the data center. Drenkelfort et al. (2015) present an alternative cooling option for data centers that can reduce energy consumption. Similarly, the paper by Tae et al. (2014) discusses how data center cooling efficiency can be increased by managing the air circulation in an effective manner. Sarood et al. (2012) discusses about cooling energy consumption and reducing hot spot formation. Bagci (2014) investigate power management in cloud servers while Beloglazov and Buyya (2012) discuss the need for designing algorithms that will help in power management. Berral et al. (2010) propose a machine learning algorithm for energy aware scheduling in data centers.

Performance metrics is another important aspect of power savings as most data center operators as well as government bodies use metrics to monitor data center energy consumption. Performance metrics are indicators of the health and efficiency of a data center. Pawlish et al. (2014) discuss metrics such as server energy usage, power usage effectiveness and utilization rate, i.e., the extent to which the servers are used in the data centers. Schott and Emmen (2011) study metrics such as carbon footprint and power usage effectiveness. The metric carbon footprint is

related to power consumed and energy dissipated by the data center. Hence it is directly related to power savings. Seegolam and Usmani (2014) present the EU code of conduct for data centers. They describe a set of metrics which could be used in the early stage of the greening process. Finally, Uddin et al. (2014a) describe power usage efficiency as a metric to measure the performance of a data center.

The issue of renewable energy (electricity from renewable sources of energy and waste heat usage) is the smallest subcategory. Goth (2010) is the only journal article that discusses the challenges of renewable energy generation for data centers. Janacek et al. (2014) explore renewable energies and waste heat usage while Klingert et al. (2012) describe smart grids for energy generation.

4.2 Cost savings

The category of cost savings is divided into the subcategories of Energy pricing (29 articles) and Financial implications (32 articles). Energy prices depend on the source of energy and other economic parameters, while financial implications are the impact of actions taken to improve data center efficiency. Another aspect of financial implications is the increase in profit through adoption of new technologies and strategies in the data center.

Garg et al. (2011) describe how energy cost, workload, carbon emission rate and central processing unit power efficiency can change across different data centers depending on their location, architectural design, and management system. Liu et al. (2012) explain the use of sensors to monitor performance and reduce operation cost in the data center. Amokrane et al. (2015) describe how operation cost can be reduced, and cloud service provider's profit be increased. Sabbir Hasan and Huh (2013) suggest reduction in operation cost through consolidation of virtual machines in cloud data centers. Uddin et al. (2012b) explain the need for maximizing energy utilization to reduce the total cost of ownership in the data center. Berral et al. (2010) proposes a framework for optimizing profit and reducing power consumption cost. Bodenstein et al. (2011) presents mathematical models to work on the energy consumption cost of data centers. Gu et al. (2012) provide a model to link green strategies with economic impact to reduce costs, while Hertel and Wiesent (2014) propose a business case on cost and energy saving for investment in green data centers. Moghaddam et al. (2012) propose an algorithm for operation cost reduction in the data center. Vodel et al. (2015) explain that the respective trade-off between power consumption and cooling capacity results in significant cost savings.

 Table 2

 Examples of meaning units, codes and categories.

Meaning unit	Code	Category
We have designed an initial set of indicators for energy-efficiency of e-services	Energy efficiency.	Power savings.
The scheduler can decrease energy costs by up to 39%.	Decrease energy costs.	Cost savings.
Green IT framework for promoting green energy efficient data centers.	Green energy efficient data centers.	Sustainability and green energy.
Server consolidation algorithm for live migration of virtual machines.	Algorithm.	Information technology for greening data centers

Table 3Summary of literature review per category and subcategory

Category	Subcategories	Journal articles	Conference articles	Total subcategory	Total category
	Renewable energy and waste heat	1	2	3	
	usage				
Power savings	Power management/ energy	21	47	68	85
	efficiency/cooling				
	Performance metrics	10	3	14	
Cost savings	Energy pricing	11	18	29	
	Financial implications	12	20	32	61
	Frameworks and models	10	21	31	
Sustainability and green	Bodies and organizations	8	10	18	
energy	Institutional motivations	7	15	22	126
	Carbon footprint reduction	18	37	55	
	Cloud computing	9	18	27	
	Network/storage/ infrastructure	5	2	7	
Information technology	Virtual machines/ virtualization	12	18	30	
for greening data centers	Algorithms, information systems, software	17	27	44	131
	IT infrastructure manufacturing and resource allocation	6	17	23	
Aligning business	Improving service level efficiency	2	7	9	
requirements with resource utilization	Business utilization	3	5	8	17

4.3 Sustainability and green energy

The category of Sustainability and green energy consist of four subcategories; Framework and models (31 articles), Bodies and organizations (18 articles), Institutional motivation (22 articles), and Carbon footprint reduction (55 articles). This category addresses the organizational strategy to accomplishing green IT. It can be hypothesized that the other categories or subcategories are implemented through this category. These subcategories need to be implemented at the organizational, managerial level rather than at the individual department level.

Being an emerging topic, there were few articles taking a comprehensive view or developing theories or frameworks. Two exceptions from this were the articles by Alaraifi et al. (2011), and Molla and Cooper (2014). Alaraifi et al. (2011) investigated nineteen information systems used to automate data centers. The information systems were identified from five case studies and a review of existing practitioner literature, resulting in a characteristics-based framework for information systems in data centers. Molla and Cooper (2014) tested seven hypotheses about what drives the greening of data centers. Their findings showed that institutional forces created managerial expectations and thus influenced the development of organizational ability and actions leading

to green IT in data centers, for example virtualization and cloud computing.

The article by Cigaric (2015) on big cloud infrastructures mentions all the four subcategories as well as the significance of stakeholders, such as governments, to implement green IT strategy in data centers. Gabriel (2008) focuses on the organizational processes and best practice framework that will standardize IT operations and facilitate Green IT. Gorge (2008) states that it is necessary to understand green IT to realize its full benefits in data centers. Kern et al. (2011) argue for the need for institutional and organizational motivations to implement green IT. Murugesan (2008) specifies a framework and structure for implementing green IT. The subcategory pertaining to bodies and organization has the least number of articles. This suggest that this could be an area for more research.

4.4 Information technology for greening data centres

This category, which is the largest including 131 articles, consists of five subcategories; Cloud computing (27 articles), Network and storage infrastructure (7 articles), Virtual machines and virtualization (30 articles), Algorithms, information system and software (44 articles), and IT infrastructure manufacturers and resource allocation (23 articles). The subcategories were created based on the

main concepts in information technology that influence data center operations. All energy consumption (power and cooling) costs occur due to IT operations in the data center as the electricity and cooling infrastructure exist for cooling the servers, storage and networking equipment. However, the number of articles and conference papers about network and storage infrastructure is limited which indicates an area for further research. Goiri et al. (2015) and Garg et al. (2010) describes how schedulers can contribute to distribution of data loads and thus lower power consumption. Sabharwal et al. (2013) and Alarifi et al. (2012) focus on information systems solutions which can advance green IT. Liu et al. (2012) studies the use of sensors and infrastructure equipment to monitor data centers. Kachris and Tomkos (2013) focus on green network infrastructure. Uddin et al. (2014b) focus on using virtualization technology to implement green IT in data centers. Patel et al. (2015) discuss the impact of green cloud computing as well as Pawlish et al. (2012). Piazolla et al. (2015) explains the impact of virtualization on power consumption which influences green IT.

4.5 Aligning business requirements with resource utilization

This classification is based the aspect of improving efficiency of operations in data centers. Initially most information technology operations were organized along technical/engineering specialty. However, with the increase in business most IT operations are organized along business lines. The consumption of IT resources is directly proportional to business decisions or business impact. From the table, it is seen here that articles and conference papers pertaining to this aspect are negligible as most of them tend to focus on the engineering/technical aspects of data center. Arnoldus et al. (2013), and Berral et al. (2010) are some of the articles that deal with the business aspects of managing data centres.

The subcategories of improving service level efficiency and business utilization were created based on the content of the articles and conference papers that fit into these sub categories. Subburaj et al. (2014), explains how the goal of Green IT can be achieved by aligning business requirements with IT resource utilization.

5. Conclusion

The purpose of this article was to answer the question of how data centers can contribute in advancing green IT. To fulfil this purpose, a framework describing how data centers can contribute to this was created based on the findings of the literature review. The framework is presented in Fig 2.

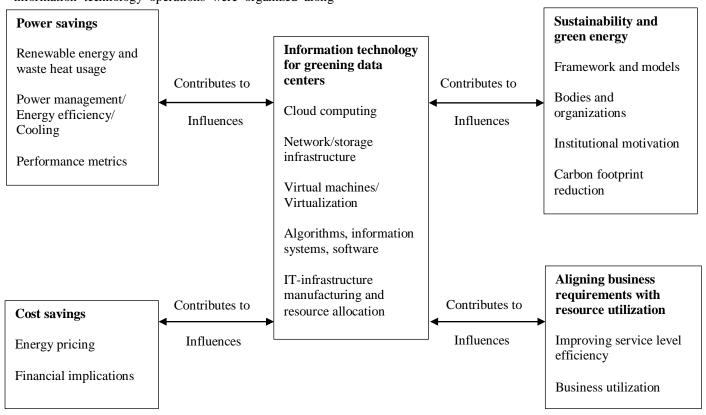


Fig. 2. Framework on how data centers advance green IT.

The framework includes all the categories and subcategories derived from the articles and conference papers. The framework aims to contribute to the understanding of the relative connections between different categories and the different methods by which green IT can be implemented. The information technology for data centers is seen to be at the heart of data center operations, with other infrastructure such as power and cooling management to support it. The reason for having bidirectional arrow marks between the categories is that while one contributes towards the performance of other category, the latter influences the former. The categories of power savings, cost savings, business alignment and green and sustainability are connected through information technology in the data center as they exist to support the applications and data that are executed in the IT infrastructure.

The terms "contributes" means that information technology contributes to power saving with efficient operation while the need to save power influences the need efficient technologies. Similarly, information for technology can contribute to cost saving while the need to save cost influences cost effective technologies. Information technology contributes to sustainability and green energy. The different subcategories listed under sustainability and green energy influences information technology in data centers. Information technology contributes to better resource utilization and business alignment while the need for aligning business with Information technology influences technology in the data center. The relationship between business alignment with resource utilization and information technology can be considered as having higher precedence over other relationships as this the challenge that companies are confronted with owing to the dynamic business environment.

Conclusively, green IT starts from the design of software, applications and architecture based on business requirements. This is an area that is yet to be explored in detail as the technology exists to serve business requirements. This is related to the concept of sustainable software engineering. Both green IT and ICT support each other mutually (Murugesan and Gangadharan, 2012). Decisions related strategic information technology (IT) evaluation and management are necessarily complex because they incorporate multiple strategic decision-making dimensions. Complexities increase in these IT decisions because multiple decision makers, functions, and sometimes organizations are also involved (Sarkis and Sundarraj, 2003; Sarkis and Talluri, 2004; Sarkis and Sundarraj, 2006).

5.1 Limitations and Suggestions for Further Research

From the articles analyzed, it is seen that certain areas such as sustainable software engineering and space management in data centers need more attention in research. The framework proposed is based on the literature review. It is missing out on the vital component of space

utilization in the data center. This is because the literature review has not covered this subcategory. Space is an important subcategory that can be categorized within the main category of cost savings. Similarly, the influence of business alignment with information technology needs to be explored further. One suggestion for future research would be to study the relationships between various categories and subcategories quantitively to determine priorities and dependencies when it comes to implementing green IT in a data center of any given industry.

Acknowledgments

The authors would like to thank the Swedish Research School of Management and IT for supporting the study financially and for valuable comments on the article during research school seminars.

Appendix A

Table 1
Concept matrix for journal articles

Main categories	Po	ower savings		Cost sa	avings	Susta	ainability and	green end	ergy	Info	ormation to	echnology fo centers	or greenin	ig data	requirem	business ents with utilization
Subcategories/ Authors	RE & WHU	PM/EE/	PM	EP	FI	F & M	B & O	IM	CFR	CC	N/SI	VM/V	AISS	ITIM & RA	ISLE	BU
Alaraifi et al. (2012)													X			
Amokrane et al.						X			X	X		X	X			
(2013)																
Amokrane et al.					X	X	X		X	X		X				
(2015)																
Arnfield (2009)									X	X		X				
Aslekar & Damle		X			X											
(2015)		71			21											
Beloglazov et al.										X			X	X		
(2012)																
Cameron (2014)		X							X			X				
Carter and Rajamani.		X				X			X			71				
(2010)		71				21			71							
Ciglaric (2015)		X				X	X	X	X							
Drenkelfort et al.		X														
(2015)																
Fukaya et al. (2010)											X		X			
Gabriel (2008)						X	X	X								X
Garg et al. (2010)				X						X			X			
Gorge (2008)						X	X	X	X							
Goth (2010)	X					21	71	11	X							
Kachris & Tomkos											X					
(2013)																
Kern et al. (2011)							X	X	X				X			
Knobloch (2013)		X											X X			
Liu et al. (2012)		X		X										X		
Llopis et al. (2013)		X		X X							X					
Moghaddam et al.									X				X			
(2014)																
Murtuazev & Oh												X	X			
(2011)																
Murugesan (2008)		X				X			X	X	X	X	X	X		
Onda et al. (2014)														X		
Park et al. (2012)						X										
Pawlish et al. (2014)		X	X									X				
Rao & Rao (2015)												X	X			
Ruth (2009)			X				X	X	X	X						
Ruth (2011)		X	X				X X	X	X			X	X			

Journal of Soft Computing and Decision Support Systems 5:1 (2018) 9-26

Main categories		Power savings		Cost s	avings	Sust	ainability ar	ıd green e	nergy	Informa	a centers	Aligning busines requirements wit resource utilization				
Subcategories/ Authors	RE & WHU	PM/EE/ C	PM	EP	FI	F & M	B & O	IM	CFR	CC	N/SI	VM/V	AISS	ITIM & RA	ISLE	BU
Sabbir Hasan & Huh		X		X	X							X	X			
(2013)																
Sabharwal et al. (2013)		X											X			
Sarood et al. (2012)		X	X	X	X								X			
Schott & Emmen (2011)		X	X													
Smith (2011)				X	X	X	X	X	X							
Stansberry (2013)				X	X									X		
Subburaj et al. (2014)									X						X	X
Taj & Basu (2015)		X		X	X											
Tae et al. (2014)		X		X	X								X			
Tian et al. (2013)			X										X			
Uddin et al. (2011)		X	X							X	X			X	X	X
Uddin et al. (2012a)		X	X			X			X	X		X				
Uddin et al. (2012b)		X		X	X				X							
Uddin et al. (2013)			X	X	X											
Uddin et al. (2014a)			X	X	X											
Uddin et al. (2014b)		X							X			X				
Total per subcategory	1	21	10	11	12	10	8	7	18	9	5	12	17	6	2	3
Total per category	•	32		2	3		4.	3	•		•	49	•			5

Abbreviations of subcategories:

RE & WHU: Renewable energy and waste heat usage, PM/EE/C: Power management/energy efficiency/cooling, PM: Performance metrics, EP: Energy pricing, FI: Financial implications, F & M: Frameworks and models, B & O: Bodies and organizations, IM: Institutional motivations, CFR: Carbon footprint reduction, CC: Cloud computing, N/SI: Network/storage/infrastructure, VM/V: Virtual machines/virtualization AISS: Algorithms, information systems, software, ITIM & RA: IT infrastructure manufacturing and resource allocation, ISLE: Improving service level efficiency, BU: Business utilization.

Table 2 Concept matrix for conference articles

Main categories	Power savings			Cost savings		Sust	ainability aı	nd green e	nergy	Inform	Aligning business requirements with resource utilization					
Subcategories/	RE &	PM/EE/	PM	EP	FI	F & M	B & O	IM	CFR	CC	N/SI	VM/V	AISS	ITIM	ISLE	BU
Authors Abe et al. (2011)	WHU	C X												& RA		
()		Λ											v			
Alaraifi et al. (2011) Alaraifi et al. (2012)									v				X X	X		
		v		v	v	v			X X	v		v	Λ	X		
Amokrane et al. (2015)		X X		X	X	X			А	X X		X X	v	А	v	v
Anandharajan &		Λ				X				Λ		Λ	X		X	X
Bhagyaveni (2014)		37											37		37	37
Arnoldus et al. (2013)		X								37		37	X	37	X	X
Bagci (2014)		X		37	37				37	X		X	X	X		
Beloglazov & Buyya		X		X	X				X			X		X		
(2010)		v								v		v	v			
Beloglazov and Buyya (2012)		X								X		X	X			
Berral et al. (2011)		X				X				X		X	X		v	
Berral et al. (2011)		X	X			X				Λ		Λ	X		X X	X
			Λ	v	v								X		Λ	Λ
Bodenstein et al.(2011)		X X		X X	X X	X X							X			
Brandt et al. (2012)		X X		А	Λ	Α			X							
Capra & Merlo (2009)		X X							А			X	X X			
Chait & Juiz (2013)						X			v			Λ	Λ			
Dick et al. (2010)		X				Α			X	37		37			37	37
Farahnakian et al.		X								X		X			X	X
(2013a)				X	X								X			
Farahnakian et al.				Λ	Λ								Λ			
(2013b)		v											v	v	v	
Farahnakian et al.		X											X	X	X	
(2014)		v		X	X		X	v					v			
Garcia et al. (2011)		X		Λ	Λ		Λ	X	v	v		v	X	v		
Garg et al. (2011)		X				37			X	X		X	37	X		
Germain-Renaud et al. (2011)		X				X							X			

Journal of Soft Computing and Decision Support Systems 5:1 (2018) 9-26

Main categories	Power savings			Cost savings		Sust	ainability ar	nd green e	nergy	Inform	a centers	Aligning business requirements with resource utilization				
Subcategories/ Authors	RE & WHU	PM/EE/ C	PM	EP	FI	F & M	B & O	IM	CFR	CC	N/SI	VM/V	AISS	ITIM & RA	ISLE	BU
Godbole & Lamb (2014)		X		X	X			X	X	X		X	X	X		
Godbole & Lamb (2015)				X	X		X		X	X		X	X			
Gu et al. (2012)				X	X	X			X							
Harmon & Demirkan							X	X	X							
(2011)																
Harmon et al. (2010)		X				X	X	X	X							
Hertel & Wiesent (2014)		X	X	X	X			X	X							
Herzog (2013)						X	X	X	X							
Hintemann & Fichter		X												X		
(2012)																
Janacek et al. (2014)	X	X				X								X		
Karanasios et al. (2010)				X	X	X	X	X	X							
Klingert et al. (2012)	X					X	X	X	X							
Lamb & Marimekala		X							X				X			
(2013)																
Lamb and Marimekala		X					X	X	X	X						
(2015)																
Lamb (2011)		X		X	X			X	X	X		X				
Lee et al. (2015)						X					X			X		
Lincke (2012)		X		X	X	X	X	X	X							
Liu et al. (2011)		X		X	X				X					X		
Malik & Barthel (2008)		X							X							
Merlo (2009)		X							X				X		X	
Moghaddam et al.		X		X	X				X							
(2012)																
Molla & Cooper (2014)					X	X	X	X	X							
Ouchi et al. (2011)		X							X							
Patel et al.(2013)		X						X	X							
Patel et al. (2015)		X		X	X				X	X	X	X				

Journal of Soft Computing and Decision Support Systems 5:1 (2018) 9-26

Main categories		Power savings		Cost s	avings	Sust	ainability ar	ıd green e	nergy	Inform	a centers	Aligning business requirements with resource utilization				
Subcategories/	RE &	PM/EE/	PM	EP	FI	F & M	B & O	IM	CFR	CC	N/SI	VM/V	AISS	ITIM	ISLE	BU
Authors	WHU	C												& RA		
Pawlish et al. (2012a)									X	X		X	X			
Pawlish et al. (2012b)		X			X				X			X				
Peoples et al.(2011)		X				X			X				X			
Petrovic et al. (2011)		X							X	X				X		X
Piazzolla et al. (2015)		X										X	X	X		
Rao et al. (2011)								X	X				X			
Rawas et al. (2015)		X							X	X						
Schödwell et al. (2013)		X				X			X				X			
Schott & Emmen (2010)		X												X		
Seegolam & Usmani (2014)		X	X						X							
Shaw & Singh (2014)				X	X					X						
Siddavatam et al. (2011)													X	X		
Singh et al. (2013)										X			X			
Skejic et al. (2010)		X										X		X		
Vereecken et al. (2012)		X				X			X	X		X				
Vodel et al. (2015)		X		X	X			X	X					X		
Yoshino et al. (2010)		X				X										
Total per subcategory	2	47	3	18	20	21	10	15	37	18	2	18	27	17	7	5
Total per category	•	52		3	8	•	8.	3			•	82			1	12

Abbreviations of subcategories:

RE & WHU: Renewable energy and waste heat usage, PM/EE/C: Power management/energy efficiency/cooling, PM: Performance metrics, EP: Energy pricing, FI: Financial implications, F & M: Frameworks and models, B & O: Bodies and organizations, IM: Institutional motivations, CFR: Carbon footprint reduction, CC: Cloud computing, N/SI: Network/storage/infrastructure, VM/V: Virtual machines/virtualization AISS: Algorithms, information systems, software, ITIM & RA: IT infrastructure manufacturing and resource allocation, ISLE: Improving service level efficiency, BU: Business utilization.

References

- Abe, Y. Ouchi, M. Fukagaya, M. Kitagawa, T. Ohta, H. Shinmoto, Y. and Iimura, K.I. (2010). Development of advanced cooling network systems for data centers, Proceedings of the 2010 14th International Heat Transfer Conference, IHTC 14.
- Alaraifi, A. Molla, A. and Deng, H. (2011). Antecedents to Sensor Information Systems assimilation in data centres, Proceedings of the 19th European Conference on Information Systems, ECIS 2011.
- Alaraifi, A. Molla, A. and Deng, H. (2012). The assimilation of sensor information systems: An empirical investigation in the data centres industry, International Journal of Business Information Systems, 11(3), pp. 283-303.
- Alaravi, A. Molla, A. and Deng, H. (2011). Information systems for data centres: Description and optional characteristics, Proceedings of Pacific Asia Conference on Information Systems (PACIS) 2011.
- Amokrane, A. Zhani, M.F. Zhang, Q. Langar, R. Boutaba, R. and Pujolle, G. (2015). On satisfying green SLAs in distributed clouds, Proceedings of the 10th International Conference on Network and Service Management, CNSM 2014.
- Anandharajan, T.V. and Bhagyaveni, M.A. (2014). Trust Based VM Consolidation in Cloud Data Centers, in Recent Trends in Computer Networks and Distributed Systems Security (pp. 103-114). Springer Berlin Heidelberg.
- Arnfield, R. (2004). Banking on digital certificates to prevent UK payment fraud, Infosecurity Today, 1(3), pp. 16-18.
- Arnoldus, J. Gresnigt, J. Grosskop, K. and Visser, J. (2013). Energy-efficiency indicators for e-services, Proceedings of the 2nd International Workshop on Green and Sustainable Software, GREENS 2013. Telematics and Informatics
- Asadi, S. Hussin, A.R.C. and Dahlan H.M. (2017). Organizational research in the field of Green IT: A systematic literature review from 2007 to 2016, Telematics and Informatics, 34, pp. 1191-1249.
- Aslekar, A. and Damle, P. (2015). Improving efficiency of data centres in India: A review, Indian Journal of Science and Technology, 8, pp. 44-49.
- Bagci, F. (2014). Towards performance and power management of cloud servers, Proceedings of the 11th International Conference on Information Technology: New Generations.
- Beloglazov, A. Abawajy, J. and Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing, Future Generation Computer Systems, 28(5), pp. 755-768.
- Beloglazov, A. and Buyya, R. (2010). Energy efficient allocation of virtual machines in cloud data centers, Proceedings of the CCGrid 2010: 10th IEEE/ACM International Conference on Cluster, Cloud, and Grid Computing.
- Beloglazov, A. and Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers, Concurrency Computation Practice and Experience, 24(13), pp. 1397-1420.
- Berral, J.L. Gavaldà, R. and Torres, J. (2011). Adaptive scheduling on power-aware managed data- centers using machine learning, Proceedings of the 12th IEEE/ACM International Conference on Grid Computing, Grid 2011.
- Berral, J.L. Goiri, Í. Nou, R. Julià, F. Guitart, J. Gavaldà, R. and Torres, J. (2010). Towards energy-aware scheduling in data centers using machine learning, Proceedings of the e-Energy 2010: 1st Int'l Conf. on Energy-Efficient Computing and Networking.

- Bodenstein, C. Hedwig, M. and Neumann, D. (2011). Low-energy automated scheduling of computing resources, Proceedings of the 1st ACM/IEEE Workshop on Autonomic Computing in Economics, ACE'11.
- Boudreau, M. C. Chen, A. and Huber, M. (2008). Green IS: Building sustainable business practices. Information systems: A global text 1-17 (2008).
- Brandt, T. and Bodenstein, C. (2012). Evaluating scheduling methods for energy cost reduction in a heterogeneous data center environment, Proceedings of the 20th European Conference on Infor- mation Systems (ECIS) 2012.
- Brooks, S. Wang, X. and Sarker, S. (2010). Unpacking Green IT: A Review of the Existing Literature, Proceedings of Americas Conference on Information Systems (AMCIS) 2010.
- Brown, B.J. Hanson, M.E. Liverman, D.M. and Merideth Jr, R.W. (1987). Global sustainability: toward definition, Environmental Management, 11(6), pp. 713-719.
- Brundtland, G.H. (1987). Our common future—Call for action, Environmental Conservation, 14(04), pp. 291-294.
- Cameron, K.W. 2014. Energy efficiency in the wild: Why datacenters fear power management. Computer, 47(11), pp. 89-92.
- Capra, E. Francalanci, C. and Slaughter, S.A. (2012). "Is software "green"? Application development environments and energy efficiency in open source applications, Information and Software Technology, 54(1), pp. 60-71.
- Capra, E. and Merlo, F. (2009). Green IT: Everything starts from the software, Proceedings of the 17th European Conference on Information Systems, ECIS 2009.
- Carter, J. and Rajamani, K. (2010). Designing energy-efficient servers and data centers, Computer, 43(7), pp. 76-78.
- Chait, K. and Juiz, C. (2013). Research line on improving energy efficiency in web servers, Proceedings of the 2013 World Congress on Computer and Information Technology, WCCIT 2013.
- Chasin, F. (2014). Sustainability: Are We All Talking About the Same Thing? State-of-the-Art and Proposal for an Integrative Definition of Sustainability in Information Systems, Proceedings of the 2nd International Conference on ICT for Sustainability (ICT4S) 2014.
- Ciglarič, M. (2015). Big cloud infrastructures: How green are they?" Elektrotehniski Vestnik/Electrotechnical Review, 82(5), pp. 265-271.
- Dick, M, Naumann, S. and Held, A. (2010). Green Web Engineering: A set of principles to support the development and operation of "green" websites and their utilization during a website's life cycle, Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST) 2010.
- Drenkelfort, G. Kieseler, S. Pasemann, A., and Behrendt, F. (2015). Aquifer thermal energy storages as a cooling option for German data centers", Energy Efficiency, 8(2), pp. 385-402.
- Dovers, S. (1989). Sustainability: Definitions. Clarifications and Contexts.
- Erek, K. Loeser, F. and Zarnekow, R. (2012). Reference Model for Sustainable Information Systems Management: Establishing a Holistic Research Agenda.
- Elliot, S. (2011). Transdisciplinary Perspectives on Environmental Sustainability: A resource base and framework for IT enabled business transformation, Management Information Systems Quarterly, 35(1), pp. 197-236.
- Elo, S. and Kyngäs, H. (2008). The qualitative content analysis process, Journal of Advanced Nursing, 62(1), pp. 107-115.
- Eshahani, M.D. Rahman, A.A. and Zakaria, N.H. (2014). The Status Quo and the Prospect of Green IT and Green IS: A

- Systematic Literature Review, Journal of Soft Computing and Decision Support Systems, 2(1), pp. 18-34.
- Eshahani, M.D. Rahman, A.A. and Zakaria, N.H. (2015). Green IT/IS Adoption as Corporate Ecological Responsiveness: An Academic Literature Review, Journal of Soft Computing and Decision Support Systems, 2(1), pp. 35-43.
- Farahnakian, F. Liljeberg, P. and Plosila, J. (2013a)."LiRCUP: Linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers, Proceedings of 39th Euromicro Conference Series on Software Engineering and Advanced Applications, SEAA 2013.
- Farahnakian, F. Pahikkala, T. Liljeberg, P. and Plosila, J. (2013b). Energy aware consolidation algorithm based on K-nearest neighbor regression for cloud data centers, Proceedings of 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, UCC 2013.
- Farahnakian, F. Liljeberg, P. and Plosila, J. (2014). Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning, Proceedings of 2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2014.
- Ferreira, A.M, Kritikos, K. and Pernici, B. (2009). Energy-aware design of service-based applications, in Service-Oriented Computing (pp. 99-114). Springer Berlin Heidelberg.
- Fukaya, M. Ishibashi, H. and Arai, M. (2010). Network platform for next-generation data centers, Fujitsu Scientific and Technical Journal, 46(4), pp. 403-409.
- Gabriel, C. (2008). Why it's not naive to be green, Business Information Review, (25)4), pp. 230-237.
- García, D.F. Medrano, R. and Entrialgo, J. (2011). Algorithm to optimize the power consumption of scalable clusters guaranteeing response times, Proceedings of the IADIS International Conferences - Informatics 2011, Wireless Applications and Computing 2011, Telecommunications, Networks and Systems 2011.
- Garg, S.K. Yeo, C.S. Anandasivam, A. and Buyya, R. (2010). Environment-conscious scheduling of HPC applications on distributed cloud-oriented data center, Journal of Parallel and Distributed Computing, 71(6), pp. 732-749.
- Garg, S.K. Yeo, C.S. and Buyya, R. (2011). Green cloud framework for improving carbon efficiency of clouds, Vol. 6852 LNCS. Lecture Notes in Computer Science (pp. 491-502).
- Gartner. (2013). Data center. Retrieved from: http://www.gartner.com/it-glossary/data-center/ (visited on 10/18/2015)
- Germain-Renaud, C. Fürst, F. Jouvin, M. Kassel, G. Nauroy, J. and Philippon, G. (2011). The Green Computing Observatory: A data curation approach for green IT, Proceedings of IEEE 9th International Conference on Dependable, Autonomic and Secure Computing, DASC 2011.
- Glavič, P. and Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of cleaner production, 15(18), 1875-1885.
- Godbole, N.S. and Lamb, J. (2014). Calculating a hospital's IT Energy Efficiency and determining cost effective ways for improvement, Proceedings of the 11th International Conference and Expo on Emerging Technologies for a Smarter World, CEWIT 2014.
- Godbole, N.S. and Lamb, J. (2015). Using data science and big data analytics to make healthcare green, Proceedings of the 2015 12th International Conference and Expo on Emerging Technologies for a Smarter World, CEWIT 2015.
- Goiri, Í. Haque, M.E. Le, K. Beauchea, R. Nguyen, T.D., Guitart, J. ... and Bianchini, R. (2015). Matching renewable energy

- supply and demand in green datacenters, Ad Hoc Networks, 25, pp. 520-534.
- Gorge, M. (2008). Are we being 'greenwashed' to the detriment of our organisations' security? Computer Fraud and Security, 10, pp. 14-18.
- Goth, G. (2010). Data center operators face energy irony", IEEE Internet Computing, 14(2), pp. 7-10.
- Graneheim, U.H. and Lundman, B. (2004). Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness, Nurse Education Today, 24(2), pp. 105-112.
- Gu, Q. Lago, P. and Potenza, S. (2012). Aligning economic impact with environmental benefits: A green strategy model, Proceedings of the 2012 1st International Workshop on Green and Sustainable Software, GREENS 2012.
- Harmon, R.R. Daim, T. and Raffo, D. (2010). Roadmapping the future of sustainable IT, Proceedings of the PICMET '10 -Portland International Center for Management of Engineering and Technology.
- Harmon, R.R. and Demirkan, H. (2011). The corporate sustainability dimensions of service-oriented information technology, Proceedings of 2011 Annual SRII Global Conference, SRII 2011.
- Hedwig, M. Malkowski, S. and Neumann, D. (2009). Taming energy costs of large enterprise systems through adaptive provisioning. ICIS 2009 Proceedings, 140.
- Hertel, M. and Wiesent, J. (2014). Towards an optimal investment budget for green data centers, Proceedings of 22nd European Conference on Information Systems (ECIS) 2014.
- Herzog, C. (2013). Standardization bodies, initiatives and their relation to green IT focused on the data centre side, Vol. 8046 LNCS. Lecture Notes in Computer Science (pp. 289-299).
- Hintemann, R. and Fichter, K. (2012). Energy consumption and quantities of materials in German data centers, Proceedings of the Electronics Goes Green 2012+, ECG 2012 - Joint International Conference and Exhibition.
- Huang, H. (2008). A sustainable systems development lifecycle. PACIS 2008 Proceedings, 81.
- Ijab, M.T. Molla, A. and Cooper, V. (2012). Green information systems (green IS) practice in organisation: tracing its emergence and recurrent use, Proceedings of Americas Conference on Information Systems (AMCIS) 2012.
- Janacek, S. Schomaker, G. and Nebel, W. (2014). Data Center Smart Grid Integration considering Renewable Energies and Waste Heat Usage, in Energy-Efficient Data Centers (pp. 99-109). Springer Berlin Heidelberg.
- Jenkin, T. A. Webster, J. and McShane, L. (2011). An agenda for 'Green'information technology and systems research. Information and Organization 21(1), 17-40.
- Kachris, C. and Tomkos, I. (2013). Power consumption evaluation of all-optical data center networks, Cluster Computing, 16(3), pp. 611-623.
- Karanasios, S. Cooper, V. Deng, H. Molla, A. and Pittayachawan, S. (2010). Antecedents to greening data centres: A conceptual framework and exploratory case study, Proceedings of ACIS 2010 21st Australasian Conference on Information Systems.
- Kern, E, Dick, M. Johann, T. and Naumann, S. (2011). Green Software and Green IT: An End Users Perspective, in Information Technologies in Environmental Engineering (pp. 199-211). Springer Berlin Heidelberg.
- Khasawneh, N. n.d. Approaching the data center project. Video presentation. Retrieved from: http://www.just.edu/~natheer/.../01_Approaching_the_Data_C enter Project (visited on 08/15/2015)

- Klingert, S. Berl, A. Beck, M. Serban, R. Di Girolamo, M. Giuliani, G. and Salden, A. (2012). Sustainable energy management in data centers through collaboration (pp. 13-24).
- Knobloch, M. (2013). Energy-Aware High Performance Computing - A Survey, Advances in Computers, 88, pp. 1-78.
- Koomey, J.G. (2011). Growth in data center electricity use 2005 to 2010. Stanford University: Analytics Press. Retrieved from: http://www.analyticspress.com/datacenters.html
- Kuhlman, T. and Farrington, J. (2010). What is sustainability?, Sustainability, 2(11), pp. 3436-3448.
- Lamb, J. (2011). Green IT and use of private cloud computing in South Africa, Proceedings of the 2011 8th International Conference and Expo on Emerging Technologies for a Smarter World, CEWIT 2011.
- Lamb, J. and Marimekala, S.K.V. (2013). Smart green infrastructure for innovation and transformation hosting environments, Proceedings of the 10th International Conference and Expo on Emerging Technologies for a Smarter World, CEWIT 2013.
- Lamb, J. and Marimekala, S.K.V. (2015). STEM and green IT, Proceedings of the 12th International Conference and Expo on Emerging Technologies for a Smarter World, CEWIT 2015.
- Lee, J. Kang, K. and Song, C. (2015). Analyzing I/O patterns for the design of energy-efficient image servers, IPCCC 2014.
- Lei, C.F. and Ngai, E.W.T. (2013). Green IT Adoption: An Academic Review of Literature, Proceedings of Pacific Asia Conference on Information Systems (PACIS) 2013.
- Lincke, S.J. (2012). Green IT: Serving multiple purposes, Proceedings of SIGITE'12 the ACM Special Interest Group for Information Technology Education Conference.
- Liu, L. Masfary, O. and Li, J. (2011). Evaluation of server virtualization technologies for Green IT, Proceedings of Service Oriented System Engineering (SOSE), 2011 IEEE 6th International Symposium (pp. 79-84). IEEE.
- Liu, L. Masfary, O. and Antonopoulos, N. (2012). Energy performance assessment of virtualization technologies using small environmental monitoring sensors, Sensors, 12(5), pp. 6610-6628.
- Llopis, P. Blas, J.G., Isaila, F. and Carretero, J. (2013). Survey of energy-efficient and power-proportional storage systems, The Computer Journal, bxt058.
- Malik, R. and Barthel, S. (2008). Energy efficiency, its benefits and methods to close the efficiency gap, Proceedings of IEEE Applied Power Electronics Conference and Exposition APEC.
- Marrone, M. Schmidt, N.H. Kossahl, J. and Kolbe, L.M. (2011). Creating a Taxonomy of Corporate Social Responsibility, Sustainability, Stakeholders, Environment, and Green IS, and Green IT: A Literature Review, Proceedings of SIGGreen Workshop. Sprouts: Working Papers on Information Systems, pp. 11(17).
- Melville, N.P. (2010). Information systems innovation for environmental sustainability, Management Information Systems Quarterly, 34(1), pp. 1-21.
- Merlo, F. (2009). Green IT efficiency in the use of energy at the data center The SeeWeb case, Mondo Digitale, 8(3), pp. 72-78.
- Mithas, S. Khuntia, J. and Roy, P. K. (2010). Green Information Technology, Energy Efficiency, and Profits: Evidence from an Emerging Economy. In Proceedings of ICIS (p. 11).
- Moghaddam, F.F. Moghaddam, R.F. and Cheriet, M. (2012). Multi-level grouping genetic algorithm for low carbon virtual private clouds, Proceedings of the CLOSER 2012.
- Moghaddam, F.F. Moghaddam, R.F. and Cheriet, M. (2014). Carbon-aware distributed cloud: multilevel grouping genetic algorithm, Cluster Computing, 18(1), pp. 477-491.

- Molla, V. and Cooper, V. (2014). Greening data centres: The motivation, expectancy and ability drivers, Proceedings of European Conference on Information Systems (ECIS) 2014.
- Murtazaev, A. and Oh, S. (2011). Sercon: Server consolidation algorithm using live migration of virtual machines for green computing, IETE Technical Review, 28(3), pp. 212-231.
- Murugesan, S. (2008). Harnessing green IT: Principles and practices", IT professional, 10(1), pp. 24-33.
- Murugesan, S. and Gangadharan, G. (2012). Managing Green IT. Chichester: Wiley-IEEE Press.
- Onda, S. Matsuda, T. Kamonji, M. Fukuda, H. Sugiyama, S. and Miyo, M. (2014). Eco-friendly products of Fujitsu Group, Fujitsu Scientific and Technical Journal, 5(:4), pp. 66-77.
- Ouchi, M. Abe, Y. Fukagaya, M. Kitagawa, T. Ohta, H. Shinmoto, Y. and Iimura, K.I. (2011). New thermal management systems for data centers, Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, AJTEC 2011.
- Owens, S. (2003). Is there a meaningful definition of sustainability?, Plant Genetic Resources: Characterization and Utilization, 1(01), pp. 5-9.
- Park, S.H. Eo, J. and Lee, J.J. (2012). Assessing and managing an organization's green IT maturity, Management Information Systems Quarterly Executive, 11(3), pp. 127 140.
- Patel, J.U. Guercio, S.J. Bruno, A.E. Jones, M.D. and Furlani, T.R. (2013). Implementing green technologies and practices in a high performance computing center.
- Patel, Y.S. Mehrotra, N. and Soner, S. (2015). Green cloud computing: A review on Green IT areas for cloud computing environment, Proceedings of 1st International Conference on Futuristic Trends in Computational Analysis and Knowledge Management, ABLAZE 2015.
- Pawlish, M. Varde, A.S. and Robila, S.A. (2012). Cloud computing for environment-friendly data centers, Proceedings of the International Conference on Information and Knowledge Management.
- Pawlish, M. Varde, A.S. and Robila, S.A. (2012). Analyzing utilization rates in data centers for optimizing energy management, IGCC 2012.
- Pawlish, M. Varde, A.S. Robila, S.A. and Ranganathan, A. (2014). A call for energy efficiency in data centers, ACM SIGMOD Record, 43(1), pp. 45-51.
- Penzenstadler, B. (2013). Towards a Definition of Sustainability in and for Software Engineering, Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 1183-1185).
- Peoples, C. Parr, G. and McClean, S. (2011). Context-aware characterisation of energy consumption in data centres, Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management, IM 2011.
- Petrovic, N. Jeremic, V. and Isljamovic, S. (2011). Going green: Cloud computing and sustainability, Proceedings of the 9th International Conference on Strategic Management and its Support by Information Systems, 2011.
- Piazzolla, P. Ciardo, G. and Miner, A. (2015). Power consumption analysis of replicated virtual applications. (pp. 188-202).
- Rao, V.V. and Rao, M.V. (2015). Monitoring, introspecting and performance evaluation of server virtualization in cloud environment using feedback control system design, Journal of Theoretical and Applied Information Technology, 80(2), pp. 278-295.
- Rao, S.V.R.K. Saravanakumar, J. Sundararaman, K. Parthasarathi, J. and Ramesh, S. (2011). Intelligent GreenIT management for enterprises through system profiling, Green Com, 2011.
- Ruth, S. (2009). Green IT More than a three percent solution?, IEEE Internet Computing, 13(4), pp. 74-78.

- Ruth, S. (2011). Reducing ICT-related Carbon Emissions: An Exemplar for Global Energy Policy?, IETE Technical Review, 28(3), pp. 207-211.
- Sabbir Hasan, M. and Huh, E.N. (2013). Heuristic based energy-aware resource allocation by dynamic consolidation of virtual machines in cloud data center, KSII Transactions on Internet and Information Systems, 7(8), pp. 1825-1842.
- Sabharwal, M. Agrawal, A. and Metri, G. (2013). Enabling green IT through energy-aware software, IT Professional, 15(1), pp. 19-27.
- Sarkis, J. and Sundarraj, R.P. (2003). Managing large-scale global enterprise resource planning systems: a case study at Texas Instruments, International Journal of Information Management, 23(5), pp. 431-442.
- Sarkis, J. and Sundarraj, R.P. (2006). Evaluation of enterprise information technologies: a decision model for high-level consideration of strategic and operational issues, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 36(2), pp. 260-273.
- Sarkis, J. and Talluri, S. (2004). Evaluating and selecting ecommerce software and communication systems for a supply chain, European Journal of Operational Research, 159(2), pp. 318-329.
- Sarood, O. Miller, P. Totoni, E. and Kale, L.V. (2012). Load Balancing for High Performance Computing Data Centers, IEEE Transactions on Computers, 61(12), pp. 1752-1764.
- Schott, B. and Emmen, A. (2010). Green methodologies in Desktop-Grid: An invitation for discussion by the DEGISCO project, Proceedings of the International Multi conference on Computer Science and Information Technology, IMCSIT 2010.
- Schott, B. and Emmen, A. (2011). Green desktop-grids: Scientific impact, carbon footprint, power usage efficiency, Scalable Computing: Practice and Experience, 12(2).
- Schödwell, B. Erek, K. and Zarnekow, R. (2013). Data center green performance measurement: State of the art and open research challenges, Proceedings of the 19th Americas Conference on Information Systems, AMCIS 2013.
- Seegolam, A. and Usmani, K.A. (2014). Understanding the maturity of EU code of conduct on data centres: A Mauritian case study explained, Proceedings of the 2014 IST-Africa Conference and Exhibition, IST-Africa 2014.
- Shaw, S.B. and Singh, A. K. (2014). A survey on cloud computing, Proceedings of the IEEE International Conference on Green Computing, ICGCCEE 2014.
- Siddavatam, I. Johri, E. and Patole, D. (2011). Optimization of load balancing algorithm for green IT, Proceedings of the International Conference and Workshop on Emerging Trends in Technology 2011, ICWET 2011.
- Simmonds, D. and Bhattacherjee, A. (2012). Environmental sustainability in organizations: The information technology role, Proceedings of Americas Conference on Information Systems (AMCIS) 2012.
- Smith, A.D. (2011). Strategic sustainability and operational efficiency dilemma of data centres, International Journal of Business Information Systems, 8(2), pp. 107-130.
- Singh, V.K. Dutta, K. and VanderMeer, D. (2013). Estimating the energy consumption of executing software processes, Proceedings of 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenComiThings-CPSCom 2013.
- Skejić, E. Džindo, O. and Demirović, D. (2010). Virtualization of hardware resources as a method of power savings in data center, in MIPRO, 2010 Proceedings of the 33rd International Convention (pp. 636-640). IEEE.

- Stansberry, M. (2013). The future of green IT: Solving the accountability issue, Computer, 46(7), pp. 91-93.
- Subburaj, S. Kulkarni, S. and Jia, L. (2014). Green IT: Sustainability by aligning business requirements with IT resource utilization, International Journal of Communication Networks and Distributed Systems, 12(1), pp. 30-46.
- Tae, H.S. Yun, Y.G. Park, K.R. and Kim, J.M. (2014). Application of the in-rack system and ventilation path for efficiency increase in datacentre cooling, Life Science Journal, 11(10), pp. 165-169.
- Taj, N. and Basu, A. (2015). Energy management in a data center, International Journal of Applied Engineering Research, 10(69), pp. 345-350.
- Tian, Y. Lin, C. Chen, Z. Wan, J. and Peng, X. (2013). Performance evaluation and dynamic optimization of speed scaling on web servers in cloud computing, Tsinghua Science and Technology, 18(3), pp. 298-307.
- Tushi, B. Sedera, D. and Recker, J. (2014). Green IT segment analysis: an academic literature review. Proceedings of Americas Conference on Information Systems (AMCIS) 2014
- Uddin, M. and Rahman, A.A. (2011). Techniques to implement in green data centres to achieve energy efficiency and reduce global warming effects, International Journal of Global Warming, 3(4), pp. 372-389.
- Uddin, M. and Rahman, A.A. (2012a). Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics, Renewable and Sustainable Energy Reviews, 16(6), pp. 4078-4094.
- Uddin, M. and Rahman, A.A. (2012b). Validation of green IT framework for implementing energy efficient green data centres: A case study, International Journal of Green Economics, 6(4), pp. 357-374.
- Uddin, M. Rahman, A.A., Kazi, S. and Alsaqour, R. (2012c). Classification of data center to maximize energy utilization and save total cost of ownership, International Review on Computers and Software, 7(5), pp. 2106-2115.
- Uddin, M. Shah, A. Alsaqour, R. and Memon, J. (2013). Measuring efficiency of tier level data centers to implement green energy efficient data centers, Middle East Journal of Scientific Research, 15(2), pp. 200-207.
- Uddin, M. Alsaqour, R. Shah, A. and Saba, T. (2014a). Power usage effectiveness metrics to measure efficiency and performance of data centers, Applied Mathematics and Information Sciences, 8(5), pp. 2207-2216.
- Uddin, M. Shah, A. and. Memon, J. (2014b). Energy efficiency and environmental considerations for green data centres, International Journal of Green Economics, 8(2), pp. 144-157.
- Uptime Institute. (2016). Explaining the Uptime Institute's Tier Classification System. Retrieved April 3, 2016 from: https://journal.uptimeinstitute.com/explaining-uptimeinstitutes-tier-classification-system
- Watson, R.T. Boudreau, M.C. and Chen, A.J. (2010). Information systems and environmentally sustainable development: energy informatics and new directions for the IS community, Management Information Systems Quarterl, y 34(1), p. 4.
- Webster, J. and Watson, R.T. (2002). Analyzing the past to prepare for the future: Writing a literature review, Management Information Systems Quarterly, 26(2), pp. xiii-xxiii
- White, M.A. (2013). Sustainability: I know it when I see it, Ecological Economics, 86, pp. 213-217.

Venugopal

Vereecken, W. Vanheddeghem, W. Colle, D. Pickavet, M. Dhoedt, B. and Demeester, P. (2012). The environmental footprint of data centers: the influence of server renewal rates

on the overall footprint, in Green Communications and Networks (pp. 823-831). Springer Netherlands.

Vodel, M. Ritter, M. and Hardt, W. (2015). Adaptive Sensor Data Fusion for Efficient Climate Control Systems, in Universal Access in Human-Computer Interaction. Access to Interaction (pp. 582-593). Springer International Publishing.

Yoshino, M. Nishibe, N. Oba, M. and Komoda, N. (2010). Classification of energy-saving operations from the perspective of system management, Proceedings of Industrial Informatics (INDIN), 2010 8th IEEE International Conference on (pp. 651-656). IEEE.

Author Biographies

Anand Santhanam, born in Chennai, India on September 18, 1981. He is a PhD candidate in Information Systems at Jönköping International Business School, Sweden. His educational background is:

Bachelors' degree in Computer Science, 2003

Diploma in Marketing, 2009

Masters' degree in Information Systems, 2014

Christina Keller, born in Gränna, Sweden on November 27, 1961. She is a full professor in Informatics at Jönköping International Business School, Sweden. Her educational background includes:

Bachelors' degree in Psychology, 1983 Masters' degree in Information Systems, 2001 PhD in Information Systems, 2007

