An Overview of Data Mining Techniques in Recommender Systems

Mehrbakhsh Nilashi

Abstract


Nowadays, recommender systems support the online customers in their decision making and buying process. Whereas, the information in the web is increasing through continuous growing of the number of websites, recommender systems have to recommend the items with maximal matching to the users’ preference. Recommender systems are an active research topic in the data mining and machine learning fields. Data mining techniques have played an important role in the design and implementation of recommender systems. In this paper, an overview of the main data mining techniques used in the design and implementation of recommender systems is given. The relevant papers which have used the data mining techniques in the context of recommender systems are reviewed. We hope that this research helps researchers who are interested in developing recommender systems with an insight into its state-of-the-art methods.


Keywords


Recommender systems, Data mining techniques, Classification methods, Clustering methods, Prediction methods

Full Text:

Abstract PDF

References


Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749.

Agarwal, N., Haque, E., Liu, H., & Parsons, L. (2005). Research paper recommender systems: A subspace clustering approach. In Advances in Web-Age Information Management (pp. 475-491). Springer Berlin Heidelberg.

Ahmadi, H., Darvishi, M., Nilashi, M., Almaee, A., Ibrahim, O., Zolghadri, A. H., & Farahmand, M. (2014a). Evaluating the Critical Factors for Electronic Medical Record Adoption Using Fuzzy Approaches. International Journal of Innovation and Scientific Research, 9(2), 268-284.

Ahmadi, H., Nilashi, M., & Ibrahim, O. (2015). Prioritizing Critical Factors to Successful Adoption of Total Hospital Information System. Journal of Soft Computing and Decision Support Systems, 2(4), 6-16.

Ahmadi, H., Rad, M. S., Almaee, A., Nilashi, M., Ibrahim, O., Dahlan, H. M., & Zakaria, R. (2014b). Ranking the macro-level critical success factors of electronic medical record adoption using fuzzy AHP method. International Journal of Innovation and Scientific Research, 8(1), 35-42.

Ahn, H. J., Kang, H., & Lee, J. (2010). Selecting a small number of products for effective user profiling in collaborative filtering. Expert Systems with Applications, 37(4), 3055–3062

Akbari, E., Buntat, Z., Shahraki, E., Zeinalinezhad, A., & Nilashi, M. (2015). ANFIS modeling for bacteria detection based on GNR biosensor. Journal of Chemical Technology and Biotechnology.

Albadvi, A., & Shahbazi, M. (2009). A hybrid recommendation technique based on product category attributes. Expert Systems with Applications, 36, 11480–11488.

Alpaydin, E. Introduction to Machine Learning. Cambridge, Massachusetts: MIT Press. 2004.

Application of dimensionality reduction in recommender system

Ariyoshi, Y. and J. Kamahara. A hybrid recommendation method with double SVD reduction. in Database Systems for Advanced Applications. 2010. Springer.

Bagherifard, K. B., Tafreshi, F. S., Nilashi, M., & Jalalyazdi, M. (2014). Assessing the critical factors for e-learning systems using fuzzy TOPSIS and fuzzy logic. International Journal Of Computers & Technology, 12(6), 3546-3561.

Bagherifard, K., Nilashi, M, Ibrahim, O, Janahmadi, N and Ebrahimi, Leila (2012). Comparative Study of Artificial Neural Network and ARIMA Models in Predicting Exchange Rate. Research Journal of Applied Sciences, Engineering and Technology, 4(21): 4397-4403.

Bagherifard, K., Nilashi, M., Ibrahim, O., Ithnin, N., & Nojeem, L. A. (2013). Measuring semantic similarity in grids using ontology., Volume 2, Issue 3, March 2013, Pages 230–237.

Baroni-Urbani, C., Buser, M.W., (1976), “Similarity of Binary Dataâ€, Systematic Zoology, Vol. 25, No. 3, pp. 251-259.

Basu, C., Hirsh, H., and Cohen, W., Recommendation as classification: Using social and content-based information in recommendation. In In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 714–720. AAAI Press, 1998.

Bell, A and Sejnowski ,TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput 1995;7: 1129–59.

Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization methods and software, 1(1), 23-34.

Bennett, K.P., Campbell, C.: Support Vector Machines: Hype or Hellelujah?, ACM SIGKDD Explorations 2(2) (2000) 1-13.

Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25-71). Springer Berlin Heidelberg.

Berry, M. J. A., & Linoff, J. S. (2004). Data Mining Techniques for Marketing. Sales and Customer Relationship Management (2nd ed., ). Wiley.

Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification. PhD-thesis,Applied Math Center, Cornell University, Ithaca.

Billsus, D., & Pazzani, M. J. (1998, July). Learning Collaborative Information Filters. In ICML (Vol. 98, pp. 46-54).

Billsus, D., and Pazzani, M. Learning Collaborative Information Filters. In Proceedings of the 15th International Conference on Machine Learning (ICML 98) (Madison, Wisconsin, USA, July 1998), Morgan Kaufmann Publishers, pp. 46 – 54.

Blanco-Fernandez, Y., Lopez-Nores, M., Pazos-Arias, J. J., Gil-Solla, A., & Ramos-Cabrer, M. (2010). Exploiting digital TV users’ preferences in a tourism recommender system based on semantic reasoning. IEEE Transactions on Consumer Electronics, 56, 904–912.

Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filtering metric that improves the behavior of recommender systems. Knowledge-Based Systems, 23, 520–528.

Bobadilla, J., Serradilla, F., & Hernando, A. (2009). Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Systems, 22, 261–265.

Bouza, A., Reif, G., Bernstein, A., and Gall, H., Semtree: ontology-based decision tree algorithm for recommender systems. In International Semantic Web Conference, 2008.

Bradley, PS. Mangasarian, OL., Musicant,D. Optimization methods in massive datasets. In: Abello J, Pardalos PM, Resende MGC, editors. Handbook of massive datasets. Boston: Kluwer Academic Publishers; 2002. p. 439–71.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering.

In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43-52.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12(4), 331-370.

Canny, J.F. Collaborative filtering with privacy via factor analysis. In SIGIR, pages 238–245. ACM, 2002.

Cantador, I., & Castells, P. (2010). Extracting multilayered communities of interest from semantic user profiles: Application to group modeling and hybrid recommendations. Computers in Human Behavior, 27, 1321–1336.

Cao, Y., & Li, Y. (2007). An intelligent fuzzy-based recommendation system for consumer electronic products. Expert Systems with Applications, 33(1), 230-240.

Capobianco, M., & Frank, O. (1982). Comparison of statistical graph-size estimators. Journal of Statistical Planning and Inference, 6(1), 87-97.

Carbo, J., & Molina, J. M. (2004). Agent-based collaborative filtering based on fuzzy recommendations. International journal of Web engineering and technology, 1(4), 414-426.

Castellano, G., Fanelli, A. M., & Torsello, M. A. (2007). A neuro-fuzzy collaborative filtering approach for web recommendation. International Journal of Computational Science, 1(1), 27-29.

Castelli, V., Thomasian, A., and Li, C.-S. CSVD: Clustering and singular value decomposition for approximate similarity search in high-dimensional spaces. IEEE Trans. Knowledge and Data Engin., 15(3):671–685, 2003.

Cha, S.-H. and Tappert, C.C., Enhancing Binary Feature Vector Similarity Measures, in Journal of Pattern Recognition Research (JPRR), Vol 1 No 1, 2006, pp 63-77.

Cha, S.-H., Tappert, C.C., (2003), “Optimizing Binary Feature Vector Similarity Measure using Genetic Algorithmâ€, ICDAR, Edinburgh, Scotland.

Chang, C., Lin, C.: LIBSVM: a library for support vector machines , 2006.

Chau, M., Zeng, D., Chen, H., Huang, M., & Hendriawan, D. (2003). Design and evaluation of a multi-agent collaborative Web mining system. Decision Support Systems, 25, 167–183.

Chen, B., Haas, P., & Scheuermann, P. (2002, July). A new two-phase sampling based algorithm for discovering association rules. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 462-468). ACM.

Chen, G., Wang, F., & Zhang, C. (2009). Collaborative filtering using orthogonal nonnegative matrix tri-factorization. Information Processing & Management, 45,368–379.

Chen, L., & Pu, P. (2010). Experiments on the preference-based organization interface in recommender systems. ACM Transaction on Computer-Human Interaction, 17, 1–33.

Chen, Y. L., Cheng, L. C., & Chuang, C. N. (2008). A group recommendation system with consideration of interactions among group members. Expert Systems with Applications, 34, 2082–2090.

Cheng, W., J. H¨uhn, and E. H¨ullermeier. Decision tree and instance-based learning for label ranking. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 161–168, New York, NY, USA, 2009. ACM.

Cheung, K. W., Tsui, K. C., & Liu, J. (2004). Extended latent class models for collaborative recommendation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34, 143–148.

Cho, Y. H., & Kim, J. K. (2004). Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Systems with Applications, 26, 233–246.

Cho, Y. H., Kim, J. K., & Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 23, 329–342.

Choi, S. H., Kang, S. M., & Jeon, Y. J. (2006). Personalized recommendation system based on product specification values. Expert Systems with Applications, 31, 607–616.

Choi, S.-S, (2008), “Correlation Analysis of Binary Similarity Measures and Dissimilarity Measuresâ€, Doctorate dissertation, Pace University.

Christakou C, Vrettos S, Stafylopatis A (2007) A hybrid movie recommender system based on neural networks. International Journal on Artificial Intelligence Tools 16 (05):771-792

Claypool ,M., Gokhale,A., Mir,T., Pavel Murnikov, Netes,D., and Sartin,M., Combining content-based and collaborative filters in an online newspaper, In Proceedings of ACM SIGIR Workshopon Recommender Systems, 1999.

Cohen, W., Fast effective rule induction. In Machine Learning: Proceedings of the 12th International Conference, 1995.

Cohen, W., Ravikumar, P., Fienberg, S. (2003). A comparison of string distance metrics for name-matching tasks. In Proc. IJCAI-03 Workshop on Information Integration on the Web.

Comon P. Independent component analysis — a new concept? Signal Processing 1994;36:287–314.

Condliff, M. K., Lewis, D. D., Madigan, D., & Posse, C. (1999, August). Bayesian mixed-effects models for recommender systems. In ACM SIGIR’99 Workshop on Recommender Systems: Algorithms and Evaluation (Vol. 15, No. 5).

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, 13(1), 21-27.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge, UK: Cambridge University Press.

Dasarathy, B. V. (1991). Nearest neighbor ({NN}) norms:{NN} pattern classification techniques. Los Alamitos, CA: IEEE Computer Society Press

de Campos, L. M., Fernández-Luna, J. M., & Huete, J. F. (2008). A collaborative recommender system based on probabilistic inference from fuzzy observations. Fuzzy Sets and Systems, 159(12), 1554-1576.

De Lathauwer, L., & Vandewalle, J. (2004). Dimensionality reduction in higher-order signal processing and rank-(R 1, R 2,…, R N) reduction in multilinear algebra. Linear Algebra and its Applications, 391, 31-55.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM journal on Matrix Analysis and Applications, 21(4), 1253-1278.

Deza, M. M., & Deza, E. (2009). Encyclopedia of distances: Springer.

Dietterich, T.G., Hild ,H., Bakiri ,G. A comparison of ID3 and backpropagation for english text-to-speech mapping, Machine Learning 18 (1995) 51– 80.

Doumpos, M., Chatzi, E., & Zopounidis, C. (2006). An experimental evaluation of some classification methods. Journal of Global Optimization, 36(1), 33-50.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. John Wiley & Sons.

El-Hamdouchi, A., & Willett, P. (1989). Comparison of hierarchic agglomerative clustering methods for document retrieval. The Computer Journal, 32(3), 220-227.

Erd6s, P., & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci, 5, 17-61.

ERDdS, P., & R&WI, A. (1959). On random graphs I. Publ. Math. Debrecen, 6, 290-297.

Farahmand, M., Desa, M. I., & Nilashi, M. (2014a). A Combined Data Envelopment Analysis and Support Vector Regression for Efficiency Evaluation of Large Decision Making Units. International Journal of Engineering and Technology (IJET), 2310-2321.

Farahmand, M., Desa, M. I., & Nilashi, M. (2015). A Comparative Study of CCR-(ε-SVR) and CCR-(ν-SVR) Models for Efficiency Prediction of Large Decision Making Units. Journal of Soft Computing and Decision Support Systems, 2(1), 8-17.

Farahmand, M., Desa, M. I., Nilashi, M., & Wibowo, A. (2014b). An Improved Method for Predicting and Ranking Suppliers Efficiency Using Data Envelopment Analysis. Jurnal Teknologi, 73(2).

Farokhi, N., Vahid, M., Nilashi, M., & Ibrahim, O. (2016). A Multi-Criteria Recommender System for Tourism Using Fuzzy Approach. Journal of Soft Computing and Decision Support Systems, 3(4), 19-29.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188.

Fukunaga, K. (1990). Introduction to statistical pattern recognition. Academic press. San Diego, CA, USA

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906-914.

Ganesan, P., Garcia-Molina, H., & Widom, J. (2003). Exploiting hierarchical domain structure to compute similarity. ACM Transactions on Information Systems, 21,64–93.

Gao, J., & Zhang, J. (2005). Clustered SVD strategies in latent semantic indexing. Information processing & management, 41(5), 1051-1063.

Gao, M., & Wu, Z. (2009). Personalized context-aware collaborative filtering based on neural network and slope one. In Cooperative Design, Visualization, and Engineering (pp. 109-116). Springer Berlin Heidelberg.

Gemmell, J., Schimoler, T., Ramezani, M., & Mobasher, B. (2009). Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies. ITWP, 528.

Georgiou,O. and Tsapatsoulis, N. Improving the Scalability of Recommender Systems by Clustering Using Genetic Algorithms ,Lecture Notes in Computer Science, 2010, Volume 6352, Artificial Neural Networks – ICANN 2010, Springer, Pages 442-449

Ghazanfar, M. A., & Prügel-Bennett, A. (2014). Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems. Expert Systems with Applications, 41(7), 3261-3275.

Ghazanfar, M., & Prugel-Bennett, A. (2010). An Improved Switching Hybrid Recommender System Using Naive Bayes Classiï¬er and Collaborative Filtering.

Glady, N., Baesens, B., & Croux, C. (2009). Modeling churn using customer lifetime value. European Journal of Operational Research, 197(1), 402-411.

Golbandi, N., Koren, Y., & Lempel, R. (2011, February). Adaptive bootstrapping of recommender systems using decision trees. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 595-604). ACM.

Gong, S., & Ye, H. (2009, April). An item based collaborative filtering using bp neural networks prediction. In Industrial and Information Systems, 2009. IIS'09. International Conference on (pp. 146-148). IEEE.

GrÄar, M., Fortuna, B., MladeniÄ, D., & Grobelnik, M. (2006). kNN versus SVM in the collaborative filtering framework. Data Science and Classification, 251-260.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3), 389-422.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Upper Saddle River, NJ: Pearson Prentice Hall.

Han, J., Altman, R. B., Kumar, V., Mannila, H., & Pregibon, D. (2002). Emerging scientific applications in data mining. Communications of the ACM, 45(8), 54-58.

Nilashi, M., & Ibrahim, O. B. (2014). A model for detecting customer level intentions to purchase in B2C websites using TOPSIS and fuzzy logic rule-based system. Arabian Journal for Science and Engineering, 39(3), 1907-1922.

Nilashi, M., & Janahmadi, N. (2012, January). Assessing and prioritizing affecting factors in e-learning websites using AHP method and fuzzy approach. In Information and Knowledge Management (Vol. 2, No. 1, pp. 46-61).

Nilashi, M., Ahmadi, H., Ahani, A., Ravangard, R., & bin Ibrahim, O. (2016b). Determining the importance of Hospital Information System adoption factors using Fuzzy Analytic Network Process (ANP). Technological Forecasting and Social Change.

Nilashi, M., Bagherifard, K., Ibrahim, O., Alizadeh, H., Ayodele, N. L., & Nazanin, R. (2013). Collaborative filtering recommender systems. Research Journal of Applied Sciences, Engineering and Technology, 5, 4168–4182.

Nilashi, M., Bagherifard, K., Ibrahim, O., Janahmadi, N., & Barisami, M. (2011a). An application expert system for evaluating effective factors on trust in B2C. Engineering, 3(11), 1063.

Nilashi, M., bin Ibrahim, O., & Ithnin, N. (2014a). Hybrid recommendation approaches for multi-criteria collaborative filtering. Expert Systems with Applications, 41(8), 3879-3900.

Nilashi, M., bin Ibrahim, O., & Ithnin, N. (2014b). Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and Neuro-Fuzzy system. Knowledge-Based Systems, 60, 82-101.

Nilashi, M., bin Ibrahim, O., Ithnin, N., & Sarmin, N. H. (2015b). A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS. Electronic Commerce Research and Applications.

Nilashi, M., Esfahani, M. D., Roudbaraki, M. Z., Ramayah, T., & Ibrahim, O. (2016a). A Multi-Criteria Collaborative Filtering Recommender System Using Clustering and Regression Techniques. Journal of Soft Computing and Decision Support Systems, 3(5), 24-30.

Nilashi, M., Fathian, M., Gholamian, M. R., & Ibrahim, O. B. (2011c). Propose a model for customer purchase decision in B2C websites using adaptive neuro-fuzzy inference system. International Journal of Business Research and Management (IJBRM), 2(1), 1-18.

Nilashi, M., Fathian, M., Gholamian, M. R., bin Ibrahim, O., & Khoshraftar, A. (2011b). The Identification Level of Security, Usability and Transparency Effects on Trust in B2C Commercial Websites Using Adaptive Neuro Fuzzy Inference System (ANFIS). INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS (IJAE), 126.

Nilashi, M., Fathian, M., Gholamian, M. R., bin Ibrahim, O., Talebi, A., & Ithnin, N. (2011d). A comparative study of adaptive neuro fuzzy inferences system (ANFIS) and fuzzy inference system (FIS) approach for trust in B2C electronic commerce websites. JCIT, 6(9), 25-43.

Nilashi, M., Ibrahim, O. B., Ithnin, N., & Zakaria, R. (2014c). A multi-criteria recommendation system using dimensionality reduction and Neuro-Fuzzy techniques. Soft Computing, 1-35.

Nilashi, M., Ibrahim, O., Mirabi, V. R., Ebrahimi, L., & Zare, M. (2015d). The role of Security, Design and Content factors on customer trust in mobile commerce. Journal of Retailing and Consumer Services, 26, 57-69.

Nilashi, M., Jannach, D., bin Ibrahim, O., & Ithnin, N. (2015a). Clustering-and regression-based multi-criteria collaborative filtering with incremental updates. Information Sciences, 293, 235-250.

Nilashi, M., Zakaria, R., Ibrahim, O., Majid, M. Z. A., Zin, R. M., Chugtai, M. W., ... & Yakubu, D. A. (2015c). A knowledge-based expert system for assessing the performance level of green buildings. Knowledge-Based Systems, 86, 194-209.

Yu, J. X., Ou, Y., Zhang, C., & Zhang, S. (2005). Identifying interesting visitors through Web log classification. IEEE Intelligent Systems, 20, 55–59.

Yu, K., Schwaighofer, A., Tresp, V., Xu, X., & Kriegel, H. P. (2004). Probabilistic memory-based collaborative filtering. Knowledge and Data Engineering, IEEE Transactions on, 16(1), 56-69.

Yu, K., Tresp, V., and Yu, S., A nonparametric hierarchical bayesian framework for information filtering. In SIGIR ’04, 2004.

Yuan, S. T., & Tsao, Y. W. (2003). A recommendation mechanism for contextualized mobile advertising. Expert Systems with Applications, 29, 399–414.

Zadeh LA (1965) Fuzzy sets. Information and control 8 (3):338-353

Zeng, C., Xing, C. X., Zhou, L. Z., & Zheng, X. H. (2004). Similarity measure and instance selection for collaborative filtering. International Journal of Electronic Commerce, 8, 115–129.

Zhang, B., & Srihari, S. N. (2003, January). Binary vector dissimilarity measures for handwriting identification. In Electronic Imaging 2003 (pp. 28-38). International S

Zhang, C. X., & Mlynski, D. (1997). Mapping and hierarchical self-organizing neural networks for VLSI placement. Neural Networks, IEEE Transactions on, 8(2), 299-314.

Zhang, H. H., Ahn, J., Lin, X., & Park, C. (2006). Gene selection using support vector machines with non-convex penalty. Bioinformatics, 22(1), 88-95.

Zhang, T., & Iyengar, V. S. (2002). Recommender systems using linear classifiers. The Journal of Machine Learning Research, 2, 313-334.

Zhang, Y.,and Koren, J., Efficient bayesian hierarchical user modeling for recommendation system. In SIGIR 07, 2007.

Zheng, N., Li, Q., Liao, S., & Zhang, L. (2010). Which photo groups should I choose? A comparative study of recommendation algorithms in Flickr. Journal of Information Science, 36, 733–750.

Zhu, X., Shi, Y. Y., Kim, H. G., & Eom, K. W. (2006). An integrated music recommendation system. IEEE Transactions on Consumer Electronics, 52, 917–925.

Zurada, J., Introduction to artificial neural systems. West Publishing Co., St. Paul, MN, USA, 1992.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.